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ABSTRACT

Many important Fredholm integral equations have separable kernels,

which are finite rank modifications of Volterra kernels. This class of kernels
includes Green's functions for Sturm-Liouville and other two-point boundary

value problems for linear ordinary differential operators. It is shown how to
construct the Fredholm determinant, resolvent kernel, and eigenfunctions of
kernels of this class by solving related Volterra integral equations and finite
linear algebraic systems. Applications to boundary value problems are discussed,
and explicit formulas are given for a simple example. Analytic and numerical

approximation procedures for more general problems are indicated.
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RESOLVENT KERNELS OF GREEN'S FUNCTION KERNELS AND OTHER
FINITE RANK MODIFICATIONS OF FREDHOLM AND VOLTERRA KERNELS

L. B. Rall

1. A classical problem in the theory of integral equations. The equation

]
(1.1) y(x) - AIO K(x,t)y(t)dt = f(x) , 0<x <1,

for the unknown function y(x) is called a linear integral equation of

second kind. Equations of this form arise in the solution of initial and

boundary value problems for ordinary differential equations and in other areas
of applied analysis. In (1.1), the function f(x), the kernel K(x,t), and
the parameter ) are assumed to be given. In case K(x,t) =0 for t > x,

equation (1.1) is said to be of Volterra type, and the interval of integration

is actually 0

A

t < x ; otherwise, (1.1) is called an integral equation of

Fredholm type.

A central problem in the classical theory of linear integral equations
of second kind is to determine the values of ) for which the solution y(x)

of (1.1) exists and is unique, and to express this solution in the form
1

(1.2) y(x) = f(x) + af R(x,t;n)f(t)dt , 0 gx<1 ,
0 =

where R(x,t;2) 1is called the resolvent kernel of K(x,t) [12]. The investi-

gation of the unique solvability of equation (1.1) can thus be reduced to the
problem of existence and construction of R(x,t;)) .

Using operator notation, the kernel K(x,t) may be taken to define the

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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linear integral operator K on the space of functions considered. If [ de-

notes the identity operator, then (1.1) can be written in the form

(1.3) (I - K)y = f

The solution y of (1.3) exists and is unique if the operator I - \K is
invertible for the given value of A . To obtain the expression corresponding

to (1.2), the inverse of I - AK is represented in the form

(1.4) (1 - AK)-] =7+ 28(x) ,

where the resolvent operator R(1) of K is the Tinear integral operator with

kernel R(x,t;r) . Equation (1.4) leads directly to the relationships

R(2)
(1.5)
{.R(A)

by the definition of the inverse operator. These are the so-called resolvent

"

K + AKR(2) ,

K + AR()\)K ’

equations. In terms of the corresponding kernels, equations (1.5) become

1
R(x,t52) = K(x,t) + af K(x,s)R(s,t;2)ds ,
0

(1.6)

1
R(x,t51) = K(x,t) + xfo R(x,s31)K(s,t)ds

(If K(x,t) 1is a Volterra kernel, then the intervals of integration in (1.6)

reduce to t < s < x.)

In the classical setting of the theory of integral equations, one is
concerned with kernels which are bounded and at least square-integrable. The
representation (1.4) allows one to eliminate the identity operator and obtain
relationships (1.5) between linear integral operators with kernels (1.6) of

this type. This simplifies the analysis considerably, as the identity operator




cannot be represented as a linear integral operator with a bounded kernel

on the spaces of continuous or square-integrable functions [6, 8, 16]
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2. Volterra resolvent kernels. In case that K(x,t) 1is a Volterra kernel,

(1.1) takes the form

A
x
A
—

X
(2.1) y(x) - xfo K(x,t)y(t)dt = f(x) , 0 g

It is well-known [8, 11, 12, 16] that the resolvent kernel R(x,t;x) of
K(x,t) always exists under the assumptions of the classical theory, and is

given by the Neumann series

(2.2) R(x,t;2) = f] Al by, ostsxgt
n:

where

(kM (k) = Kixat)

(2.3) J Kt = . ks ™ (s,0ds = k™ (x,8)K(s,t)ds
t t

The convergence of (2.2) for all ) with finite modulus is easy to establish
by mathematical induction for bounded kernels K(x,t) . If [K(x,t)| <M,
Ostsxgl, then

(n) L ;
(2.4) [KM (x,t)| s M T B e b

from which the desired result follows. The kernels K(z)(x.t). K(3)(x.t)....

are sometimes called the iterated kernels of K(x,t) [7] .

It will be useful later to consider also the transposed Volterra integral

equation corresponding to (2.1),

1
(2.5) z(t) - xlt z(x)K(x,t)dx = g(t) , O0gt g

“.




The solution z(t) of (2.5) is given in terms of g(t)

kernel R(x,t;)) of K(x,t) as

1
(2.6) z(t) = g(t) + A/ g(x)R(x,t3n)dx , 0O0gtg]
t

and the resolvent

L e dpel £ e e




3. Fredholm resolvent kernels. For the more general case of a Fredhoim

kernel K(x,t), an expression for the resolvent kernel is sought in the form

(3.1) R(x, t;1) = MXatir)

ala)

with the numerator and denominator having series expansions

(3.2) N(x,t;x) = E A"']Kn(x,t) .
n=1

and

(3.3) a(r) =1+ E AT g

n=1 "

respectively, which converge for all A with finite modulus. The resolvent
kernel R(x,t;x) will then exist for all values of ) for which the

Fredholm determinant A()) of K(x,t) does not vanish. This is analogous

to Cramer's rule for the inversion of a finite-dimensional matrix.

Formulas for the so-called associated kernels K](x,t), Kz(x,t), S

of K(x,t) [7] appearing in (3.2) may be obtained by substituting (3.1) -

(3.3) into the resolvent equations (1.6). This gives

-
Ki(x,t) = K(x,t)
]
(3.4) < Koep (Xst) = € K(x,t) + {) K(x,s)K (s,t)ds =

1

cnK(x,t) ¥ § Kn(x,s)K(s,t)ds, L s
0

\

a result which satisfies (1.6) formally, independently of the values assigned

to Cys Cps -nn For example, if By 9 Gy W a8 0, then (3.2) becomes

A M A W




the Neumann series (2.2), which does not converge in general for ||
large. In order for (3.2) and (3.3) to be entire functions of  , one

chooses

1
i S "
(3.5) SRR X g '% Kn(x,x)dx Ry Lk & BECE

3

where the quantity tr Kn is called the trace of the kernel Kn(x,t) . The

construction (3.4) - (3.5) of the resolvent kernel is in the form given by
Lalesco [11]. Fredholm [5] originally obtained the formulas
K(s,t) K(x,s]) v K(x,sn_])

(_])n-l 1 1
(3~6) Kn(xst) = -(_l'lj-)'—- Io"jo : K(S!’t) K(S]asl) N K(S-!,S

K(sn_],t) K(sn_],s])--~K(sn_],sn_]

and the similar expressions corresponding to (3.5) for I ol ilis

The satisfaction of (3.4) is easily verified by mathematical induction.
Using Fredholm's formulas, the convergence of the series (3.2) and
(3.3) can be established on the basis of Hadamard's inequality for determinants
(see [16] for an elegant proof) and the ratio test. If |K(x,t)| < M, then
Hadamard's inequality applied to (3.6) yields the estimates
n-1 g
'(4“_]’)‘! S R B SRR

and similar bounds for |[c,|, [¢y|,... . The rate of convergence which can

(3.7) [Ky(xst)| < M -

be predicted for the series (3.2) and (3.3) on the basis of (3.7) is, of

course, much slower than that given by the estimates (2.4) applied to the




Neumann series expansion (2.2) of a Volterra resolvent kernel. For example,
if given Volterra and Fredholm kernels are bounded in absolute value by M ,
then for n = 100, the right-hand side of (3.7) exceeds that of (2.4) by

a factor of 10‘00 .

From a computational point of view, the relationships
(3.4) -~ (3.5) would appear to be preferable to the equivalent expressions
(3.6) involving determinants. It has been observed, however, that the for-
mulas corresponding to (3.4) - (3.5) for finite-dimensional matrices are
unstable numerically [4] .

Other important relationships which follow from the formulation (3.1)

of the resolvent kernel and the resolvent equations (1.6) are

1
N(x,t;2) = a(a)K(x,t) + A{) K(x,s)N(s,t;2)ds ,

(3.8)
1

a(3)K(x,t) + Afo N(x,s32)K(s,t)ds

N(X,t;k)

These are immediately evident for aA(A) # 0 . In the framework of the
classical theory, they can also be extended to the case that ) = A" s
an eigenvalue of the kernel K(x,t); that is, A(x*) = 0 . Assuming that
N(x,t;2*) does not vanish identically, a point (g£,t) in the square

0 < x,t <1 exists such that the functions

y* (x)

2" it

N

are also not identically zero. Furthermore, y*(x) satisfies the homo-

M{x,w327), -0 g

A
x
HA
-—
-

(3.9)

N(E’t;k*>i O - , ,

A
o
HA

geneous integral equation

RN I




1

(3.10) y (x) = x*fo Kix,t)y*(t)dt , 0<x<1

A

and is said to be a (right) eigenfunction of K(x,t) corresponding to

the eigenvalue X Similarly, the function z*(t) satisfies the

transposed homogeneous integral equation
* * ] *
(3.11) 2 {t)h=a [ 2 {x)x.t)dx B kaid
0

and is called a left eigenfunction of K(x,t) corresponding to i

B R T = T : ol s MBS ~ LI AN 10 S 4




4. Symmetric separable kernels. Attention will now be devoted to the

construction of resolvent kernels of a special class of Fredholm kernels.
In the symmetric case, a kernel of the form

u(t)v(x), 0 ¢

A
-
A
x
A
—
-

(4.1) G(x,t) =
u(x)v(t), 0 <

IA

>

HA
ct

g

will be called a simple separable kernel. It is assumed that the functions

u(x) and v(x) are linearly independent; otherwise, G(x,t) would be a
degenerate kernel of rank one [8, pp. 37-40]. In general, a symmetric

separable kernel is a finite sum of linearly independent kernels (4.1) .

Before dealing with the general case, the resolvent kernel of the
symmetric simple separable kernel (4.1) will be constructed. To do this,
the Fredholm integral equation

1
(4.2) y(x) - A{) G(x,t)y(t)dt = f(x), O0<xgs1 ,
will be solved. This is essentially the approach used by Drukarev [3],
Brysk [2], and Aalto [1]. Using the definition (4.1) of G(x,t), equation
(4.2) may be written as
1

X
(0.3) . ¥Mx) = A{) u(t)v(x)y(t)dt = f(x) + 2f u(x)v(t)y(t)dt
X

X
Adding the quantity [ u(x)v(t)y(t)dt to both sides of (4.3) gives
0

X
(4.4) y(x) = af K(x,t)y(t)dt = f(x) + acu(x) ,
0
where
-10-
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1
(4.5) c =/ v(t)y(t)dt
0

is to be determined, and K(x,t) is the Volterra kernel
(4.6) K(x,t) = u(t)v(x) - u(x)v(t), O0gctzgxgl

The system of equations (4.4) - (4.5) is easily seen to be equivalent to
the original integral equation (4.2).
As was shown in §2, the kernel K(x,t) has the Volterra resolvent

kernel R(x,t;r) given by (2.2) for all a . Define

l F(x) = f(x) + A{: R(x,t;2)f(t)dt

(4.7)

U(x) = u(x) + Afx R(x,t;A)u(t)dt
0

where the dependence of F(x) and U(x) on x has been suppressed for

clarity of notation. From (4.4),
(4.8) y(x) = F(x) + acU(x) ,

and from (4.5)
1 ]
(4.9) c = [ v(t)F(t)dt + xc [ v(t)u(t)dt
0 0
Thus, (4.9) has a unique solution for c¢ if
1
(4.10) A(r) =1 - af v(t)u(t)dt #0 ,
0

in which case

3}

o T SRR T




-7

]

a ]
- ] D cmm— F d

The expression (4.11) for ¢ may be written in terms of f(t) by intro-

ducing the function
1
(4.12) v(t) = v(t) + A v(x)R(x,t;2)dx
t
It then follows from (4.7) and (4.11) that
1 1
(4.13) c=—— [ V(t)f(t)dt ,
a(x) o
and, from (4.8),

1
(8.18)  y(x) = F(x) + Af ROx.ts)f(t)dt + i‘(’JAl)‘lf V(t)F(t)dt
0 0

By definition, the resolvent kernel r(x,t;x) of G(x,t) can be obtained

directly from (4.14) as

1
R(x,t; + | )Vt)s 0<tcs T Rt
(4.18) rix,tsa) = ikl | a(x) ar St e
——l-u(x)v(t), PExstsl &
ala)

provided, of course, that a(A) #0 .
Another expression for T(x,t;A) can be obtained by making use of
the fact that the resolvent kernel of a symmetric kernel G(x,t) must also

be symmetric in x and t; that is, r(x,t;x) = r(t,x;x). This gives

(
L utvix, 0<t
(4.16) r(x,t;n) = ala)

R(t,x3)) + u(t)v(x), O

T,

HA
HA

X

A

MO

nA
HA
nA

a(r)

which, when compared with (4.15), yields

M SRR Sy



abase

(4.17) AOIDR(X, t52) = U(E)V(X) - U(x)V(t), O =<t <x<1 ,
and finally,
RS
— U(t)V ’ B2k x 21,
(4.18) M(x,t3a) = | a(x) Sl ¥ =3
1\-——L— Uix)Vv(t), 0sxstzsd
a(x) G

These results give rise to the following observations.

Remark 4.1. Equation (4.18) shows that if the resolvent kernel of

a symmetric simple separable kernel (4.1) exists, then it is also a symmetric

simple separable kernel.

Remark 4.2. The expression (4.18) for the resolvent kernel

r(x,t;x) of G(x,t) can be obtained without finding the Volterra resolvent

kernel R(x,t;x) of K(x,t) explicitly; one need only solve the Volterra
integral equation (2.1) with f(x) = u(x) for y(x) = U(x), and the
transposed Volterra integral equation (2.5) with g(t) = v(t) for
z(t) = V() .

Remark 4.3. An equivalent expression for the Fredholm determinant
A(x) of G(x,t) is
(4.19) a(r) =1 - A{; V(x)u(x)dx ,
which can be obtained directly from (4.10) by interchange of the order of
integration and use of the definition (4.12) of V(t). It is easy to show
that the above expressions give expansions of A(A) and N(x,t;A) in
powers of ) with coefficients satisfying the relationships (3.4) - (3.5)

[1, 13]. The advantage of the present approach is that the rate of

- |
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convergence of the series for a(xr), U(x) = U(x;2), and V(t) = V(t;x)
can be predicted on the basis of (2.4) rather than (3.7).

Remark 4.4. The definitions of the Volterra kernel K(x,t) and
its resolvent kernel R(x,t;)) extend to the entire square 0 <x. % <71,
with

(4.20) K(x,t) = 0, R(x,t;2) = 0, 0

HA

x stz
This will result in continuous kernels for u(x), v(t) continuous, as
K(x,x) = R(x,x;1) =0, 0 < x <1 . In terms of these extended kernels,

one may write

4.21)
: L u(x)v(t)

r(x,t;A) = R(x,t;2) +
a(a)

{ G(x,t) = K(x,t) + u(x)v(t) ,

Thus, the kernel G(x,t) given by (4.1) is the sum of the Volterra
kernel K(x,t) and the degenerate kernel wu(x)v(t) of rank one. If
a(1x) # 0, then its resolvent kernel T(x,t;A) exists and is also a
rank one modification of the Volterra resolvent kernel R(x,t;A) of
K(x,t). By symmetry, one also has

G(x,t) = K(t,x) + u(t)v(x) ,

(4.22)
1

A(A

r(x,t;2) = R(t,x;1) + ) u(t)v(x)

In some applications, the expressions (4.21) or (4.22) for G(x,t) arise
more naturally than (4.1).

The next case to be examined is that ) = A* is an eigenvalue of
G(x,t); that is, A(2*) = 0. Noting that U(x) = U(x;r) and
V(t) = V(t;x) depend on ) , define

-14-




wdl

[ u*(x)

(4.23) ﬂ
V¥(t)

From (4.17), which can be extended easily to A = A%, it follows that

U(x;r%), 0

i

na
>
na
-
-

il

V(t;2*), 0 1

LI
[
A

the functions U*(x) and V*(x) are linearly dependent. Hence, for

» = 2%, the Fredholm numerator N(x,t;2) of r(x,t;») becomes

(4.24) N(x,t;2%) = aU*(x)V*(t) ,
where « # 0 is some constant. Thus, by (3.9) - (3.11), U*(x) will be
a right eigenfunction of G(x,t) corresponding to 2%, and V*(t) 4sa
corresponding left eigenfunction. As G(x,t) is symmetric, the distinction
between left and right eigenfunctions is inconsequential. However, it will
be shown later that a similar approach gives these as distinct functions in
the nonsymmetric case.

The implications of the above results for the solvability of the
integral equation (4.2) may be summed up in the following familiar language.

Theorem 4.1 (Fredholm Alternative). If the transposed homogeneous

integral equation

)
(4.25) z(t) - Af z(x)6(x,t)dx = 0, O
0

HA
[ 2
uan
p—
-

has only the trivial solution 2z(t) =0, 0 <t ¢ then equation (4.2)

A
—
-

has the unique solution

1
(4.26) y(x) = F(x) + 2 0 yie)r(t)dt, 0 ¢ x g
a(x) ‘o

On the other hand, if (4.25) has the nontrivial solution z(t) = V*(t),

|




then (4.2) has a solution only if f(x) is orthogonal to Vv*(x), that
is,

1
(4.27) [ VH(t)f(t)dt = 0

0

If (4.27) is satisfied, then (4.2) has the solutions

(4.28) y(x) = F(x) + aU*(x) ,

where « is arbitrary, and y(x) = U*(x) is a nontrivial solution of
the homogeneous integral equation

1
(4.29) y(x) = A G(x,t)y(t)dt =0, 0<x<1
0

As derived above, of course, Theorem 4.1 applies only to simple
kernels (4.1). The same technique, however, applies to general symmetric

separable kernels. Suppose that

7

A
L
HA
>
A
-
-

n o~

uj(t)vj(x), 0z

j=1

(4.30) G{x,t) =
J

h t~3

] G;(x,t) at

A
x
A
(ad
nA
—

n
jzl us(x)v;(t), 0

Then, the integral equation (4.2) with the symmetric separable kernel

(4.30) may be reduced to

n
(4.31) y(x) - *fx K(x,t)y(t)dt = f(x) + X J c. u.(x) ,
0 S S

»
where the numbers

)8

e rps— —



]
(4.32) C; =1 witiyltidt, J+1.2,....8 ,
-0 "5

are to be determined, and K(x,t) 1is the Volterra kernel

(4.33) K(x,t) = j§| [uj(t)vj(x) - uj(x)vj(t)], 0stcs

A

x

A
p—)

As before, let R(x,t;A) denote the Volterra resolvent kernel of K(x,t),

and defipe

1
F(x) = f(x) + A/ R(x,t;2)f(t)dt |,
0
(4.34) ;
Ui (x) = us(x) + AS R(x,t;\)u (t)dt, i =1,2,...,n
0

Equation (4.31) is then equivalent to
n

(4.35) y(x) = F(x) + A 'Z] ¢ Ui(x)
]:

Multiplying (4.35) by v](x), vz(x), s | vn(x) in turn and integrating

with respect to x from 0 to 1 gives the system of equations
n 1 1

(4.36) ¢y -2 [ c.f vi(x)Ui(x)dx = [ vi(x)F(x)dx, i=1,2,....,n ,
e J 1 J i
3=V "9 0

for the unknowns Cys Cps wen s Cp defined by (4.32).

Remark 4.5. It follows from (4.32), (4.35), and (4.36) that the
solution of the integral equation (4.2) with the symmetric separable kernel
(4.30) is equivalent to solving the Volterra integral equation (2.1) with
kernel (4.33) and right-hand sides f(x), u](x)...., un(x) for

.




F(x), U](x),..., Un(x), forming the n2 + n coefficients of the system

(4.36), and then solving this system of n Tlinear equations for the n

unknowns c], c2,...,cn $

It is also possible to obtain explicit expressions for the Fredholm
determinant A(») of G(x,t) and its resolvent kernel r(x,t;») in terms
of the determinant and the inverse of the coefficient matrix of the system
(4.36). It will be convenient to introduce the functions

1
(4.37) Vi(t) = vy(t) + A& v;(OR(x, t50)dx, i 0= 1,2,...,n
which are the solutions of the transposed Volterra integral equations (2.5)

with right-hand sides v](t), v2(t), £ i) vn(t) . Let the coefficients

1 1

(4.38) M / vi(x)U.(x)dx = f V. (tlu,(t)dt, 1.J=1,2,....0 ,
0 : P e

ij

define the n x n matrix A = (a;.) . Then, the coefficient matrix of

G,'-J
the system (4.36) has the form

(4-39) I i AA = (éij = Aaij) ’

where Gij is the Kronecker delta (61j =0 if i+ 3, 844 = 1), and

I = (61j) is the n x n identity matrix. If the determinant

(4.40) a(2) = det (I - AA)
does not vanish, then the inverse of the matrix I - )AA exists, and

may be written as

-18-




-] ’Bij()‘)>
4.4) I - )A = —— B = —_
( ) ( W) A(A) ) < a(a)

by the use of Cramer's rule. In this case, the system (4.36) has the

unique solutions

By
ia(a)

Hes~m3

1
i Bij(x) {) vj(x)F(x)dx =

(4.42)

ll’\/lz

1
1
"7“7' Eij(X).% L(t) f(t)dt

1

for i =1,2,...,n . Thus, the integral equation (4.2) will have the

unique solution y(x) given by (4.35), which may be written in the form

y(x) = f(x) + A{: R(x,t;1)f(t)dt +
(4.43)

n

1
v T e 9y

V.(t)f(t)dt
i=1 j=1

a(r) O ¢

From (4.43), it is possible to derive several expressions for the

resolvent kernel T(x,t;)) of the symmetric separable kernel G(x,t),

provided that the Fredholm determinant a(x) of G(x,t) is nonzero.
Extending the Volterra kernel K(x,t) and its resolvent kernel R(x,t;))
to the entire square 0 < x, t <1 as before, one may write
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‘ n
! G(x,t) = K(x,t) + § wu.(x)v.(t) ,
j=1 J J

(4.44)
1 n

n
L jzl Us (x)84 (0 V4(t)

r(x,t;a) = R(x,t;A) +
A1) ;=

Remark 4.6. The symmetric separable kernel (4.30) is a rank n
modification of the Volterra kernel (4.33). If A(A) # 0, the resolvent
kernel TI(x,t;Ar) 1is likewise a rank n modification of the Volterra
resolvent kernel R(x,t;r) of K(x,t) .

Integral operators corresponding to degenerate kernels of rank n

are sometimes called n-term dyads [6]. By symmetry,

G(x,t) = K(t,x) + E u.(t)v.(x) ,

j=1 J J
(4.45)
P(xotih) = R(baxid) + == 1§ U, (8)8, (\V4(x)
X, L5 - s X3 s s :
\ g s & W)

Comparison of (4.45) and (4.44) gives

n n
(146)  aOORt) = 3 L 8NN - U0avi(0)

and thus T(x,t;A) may also be written in the form

n n B;.:(x)
—-J—-—-—-‘i < < <
ig] jg] A(A) Ui(t)vj(x)' 0 - t s %'m :

(4.47) r(x,t;r) =

B 8 dr)
¥ 5 aihd <
L i1 JZ1 a(r) e kb

nAa
-
A
—]
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Remark 4.7. If it exists, the Fredholm resolvent kernel
r(x,t;x) of the symmetric separable kernel (4.30) is likewise the sum of
n symmetric simple separable kernels.

For n > 1, there are a number of ways in which the kernel (4.47)

may be written in the form (4.30). For example, defining the functions

n
WJ-(X) B iZ] Ui(X)eij(A). S E S P T S
(4.48)
n
05 (t) = J_Z] sij(x)vj(t). A P CRERE L

one obtains the equivalent representations

1 n
( 200 JZ] Wj(t)vj(X), Ostegxgl,
(4.49) r(x,t;y) = ®
1
L 07 JZ] \PJ-(X)VJ-(t), Osxgtgl,
and
. n
(4.50)  r(x,t;r) =
n
ROT L Uil0e(t 0sxstgl,

for the resolvent kernel of G(x,t).
Suppose now that 1 = A* is an eigenvalue of the kernel (4.30),
*
that is, A(x ) = 0. By the same method as used in the nonhomogeneous case,

the homogeneous equation (4.29) can be shown to be equivalent to the system
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(4.51)

corresponding to F(x) = 0 in (4.35) and (4.36). As A(x ) = 0, the
homogeneous system

(4.52) (1-3"A)c=0

has m < n linearly independent solutions

(4.53) (k) 2 (K) (k) (k)" SR

C-l ,Cz s+005C * esosll .

Corresponding to these solutions, which are right eigenvectors of the matrix

*
A = (“ij) corresponding to the reciprocal eigenvalue A , one obtains m

linearly independent eigenfunctions

(4.54) y:(x) - cgk)Ui(x), T T

HnesS13

i=1

of the kernel G(x,t) corresponding to the eigenvalue x*. Similarly,
*

the transposed homogeneous equation (4.25) for » = has m linearly

independent solutions

PR S T ;
(4.55) zk(t) = ) 121 dj Vj(t), k ke, 5

corresponding to the m Tlinearly independent solutions

(4.56) dtk) o (atk) gfk),, alk)y, ks T2 in s
of the transposed homogeneous system
(4.57) a1 -2"A) =0,
that is,
e

(4.58) dj -2 iz] di“ij =0, g " o8t 3

22w
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It follows from (4.36) that the nonhomogeneous integral equation (4.2)

e T e

will have no solutions unless the orthogonality conditions

(4.59) dV [ vi()F(x)dx = [ ] diTve(t)f(t)dt = [ z, (t)f(t)dt = O
o J Lo 0

ool

nHes13

J

hold for k = 1,2,...,m; that is, the right-hand side of (4.2) must be
E orthogonal to all solutions of the transposed homogeneous equation (4.25)
| with A =2". If (4.59) holds, then (4.2) is satisfied by the family of

§ solutions

x X - m *

g (4.60) y(x) = f(x) + & [ ROGEA)F(t)dt + ] vy, (x) .
0 k=1

with Y]sYpre oYy arbitrary.

The above results can be stated as the corresponding generalization
of the Fredholm Alternative Theorem to kernels (4.30) with n>1. Another
method fcr computing resolvent kernels of separable kernels (symmetric

or not) will be indicated in a lTater section.

3=
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5. Applications to boundary value problems. Symmetric separable kernels

appear frequently as Green's functions for two-point boundary value probl
for ordinary differential operators [17]. More precisely, suppose that
L[ ] is a linear ordinary differential operator, and a solution y(x)
of the differential equation
(5.1) LLy(x)] = h(x)
is sought which, together with its derivatives of lower order than the
order of L[ ], satisfies given conditions at x = 0 and x = 1. |If
this boundary value problem kit a unique solution y(x) which can be
represented as

1
£5.2) y(x) = é G(x,t)h(t)dt
for all functions h(x) from some class such as continuous functions,
then G(x,t) 1is said to be the Green's function for L[ ] correspond-
ing to the given boundary conditions. If
(5.3) h(x) = Ay(x) + g(x) ,
then the boundary value problem for the differential equation (5.1) is
equivalent to the Fredholm integral equation

1

(5.4) ~ y(x) - A é G(x,t)y(t)dt = f(x), Rgxst,
where

1
(5.5) f(x) = é G(x,t)g(t)dt, R RS

Thus, the techniques of §4 apply to the solution of (5.4) if G(x,t)
is a symmetric separable kernel, and to finding eigenvalues and eigen-

functions in the homogeneous case g(x) = 0.
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In many cases, it is possible to proceed directly from the
boundary value problem to representations for the Green's function, its
Fredholm determinant, resolvent kernel, and eigenfunctions. For example,
consider the Sturm-Liouvilie operator [17]

(5.6) LIy()] = =(p(x)y* (x)

with p(x) > 0, subject to the boundary conditions

"

ap(0)y'(0) + by(0)
cp(1)y' (1) + dy(1)

A simple way to find the Green's function for this problem is

0,
(5.7)

.

to start directly from the differential equation

(5.8) (p(x)y' (x)) = -h(x) .

One integration gives

X
(5.9) p(x)y'(x) = p(0)y'(0) - é h(t)dt .
Dividing (5.9) by p(x) and integrating again yields

g . A N A L
(5.10) y(x) = y(0) + p(0)y'(0) é - <) e é é B{ET dtds .
By defining

(5.11) F(x) = Ix S
o P(tY

and noting that change of order of integration results in

X S h(t e X X d 2 X
(5.12) g 6 B{E%dtds 5 ({ S35 | h(t)at 6 (F(x) - F(t)Th(t)dt .

3
one obtains _

X
(5.13) y(x) = y(0) + p(0)y'(0)F(x) - é [F(x) - F(t)In(t)dt

-25-
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from (5.10). The boundary conditions (5.7) will now be used to express
y(0) and p(0)y'(0) in terms of integral transforms of h(x). From
(5.9) and (5.13),

[
p(1)y'(1) = p(0)y'(0) - é h(t)dt ,
(5.14)

1
y(1) = y(0) + p(0)y'(0)F(1) - é [F(1) - F(t)Ih(t)dt .

Multiplying the first equation of (5.14) by ¢, the second by d, and
adding the results gives
1
(5.15) 0 = dy(0) + vp(0)y'(0) - é [v - dF(t)In(t)dt
by the second of the boundary conditions (5.7), where
(5.16) Yy = ¢+ &1 .
Now, multiplying (5.15) by a ard using the first boundary condition of
(5.7) results in

]

(5.17) 0 = (ad ~ by)y(0) - é aly - dF(t)]n(t)dt ,
or, 1t
(5.18) §=ad-br#0,
then
!
(5.19) y(0) = é % [y - dF(t)In(t)dt .

Similarly, multiplication of (5.15) by b and use of the first boundary

condition gives

«26-
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1
(5.20) mmrw>=-é§[y-&unmnm.

Equations (5.19) and (5.20) may be substituted into (5.13) to obtain
X 1 )
(5.21) y(x) = - é [F(x) - F(t)]n(t)dt + é 7 [a - bF(x)][y -dF(t)]h(t)dt .
Comparison of (5.21) with (5.2) gives the following results.
Remark 5.1. If & # 0, then the Green's function G(x,t) of
the Sturm-Liouville problem (5.6)-(5.7) is the rank one modification
(5.22) G(x,t) = K(x,t) + u(x)v(t)

of the Volterra kernel

(5.23) K(x,t) = =-[F(x) - F(t)], Dstsxgl,
with

u(x) = § [a - bF(x)] ,
(5.24)

v(t) = v - dF(t) .

Remark 5.2. If & # 0, then the Green's function (5.22) is the

symmetric simple separable kernel

1 fa - bF(O Iy - dF(x)], 0

A
(s
A
x
nA
—
-

(5.25) G(x,t) =
tla-bF()I0y - dF()],  Ogxctel.
This follows directly from (5.22)-(5.24) and the simple calculation
(5.26) [a - bF(x)][y - dF(t)] - 6F(x) + &F(t) = [a - bF(t)][y -dF(x)] .
Thus, the evaluation of the Fredholm determinant a(x) of G(x,t)
and the calculation of its resolvent kernel and eigenfunctions depends
only on being able to calculate the functions U(x),V(t) either in terms
of the Volterra resolvent kernel R(x,t;:x) of the kernel (5.23), or

directly by solving the Volterra integral equations cited in Remark 4.2.
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For certain simple examples, it is possible to give explicit

formulas for these results. Taking p(x) = 1 gives

(5.27) Lly(x)] = -y"(x) .

and hence

(5.28) F(x) = x, K(x,t) = -(x = t) ,
from which

(5.29) R(x,t51) = - sin/i(: - t)

The boundary conditions

(5.30) y(0) =0, y'(1) =0

correspond to (5.7) with a=0,b=1,c=1,d =0, and hence y =
§ = -1, and thus

(5.31) u(x) = x, v(t) = 1.

T,

It follows that the Green's function G(x,t) for the differential operator

(5.27) with boundary conditions (5.30) is
(5.32) 6(x,t) = «(x = t), +x,

where (x -t} =0 for Ogxs5ts), or

t, gstskx?t,
(5.33) G(x,t) =
Qsxztg
Using (5.29) and (5.31), one obtains
(5.34) U(x) = SBAX y(e) = cos/R(1 - )

from which the Fredholm determinant A()) of G(x,t) 1is seen to be
(5.35) a(r) = cosvx .
If a(») # 0, then the resolvent kernel r(x,t;x) of G(x,t) may be

written as

R e T




sl

sin'/T‘(X = t)+ e _sin/ix COS'/K(‘ - t)
" Vi COSJT’ "

(5.36) P(x,t:1) = -

corresponding to (5.32), or as the symmetric simple separable kernel

(sin/Tt cos’/A(1 - x)

YA cosvh : it
(5.37) Fixstaa) =
)51nvkx]§ngzgfr° t) Ozsxstgl,

of the same form as (5.33). It also follows immediately from (5.35)

that the eigenvalues of G(x,t) are

(5.38) [(2" - ] a=1.2.3,... .
and the corresponding eigenfunctions are proportional to

(5.39) //—-u "(x) = s:n-illi;lll! : o= 1,2:3,...

It is also possible to write down explicit formulas for the more
general second-order boundary value problem

LLy(x)] =-y"(x)

(5.40) ay'(0) + by(0)
cy' (1) + dy(1)

by the use of (5.24), (5.28), and (5.29). The Green's function G(x,t)

0,

"

0,

is obtained from

u(x)
(5.41) {:
v(t)

provided & = ad - b(c + d) # 0, the resolvent kernel TI(x,t;2) of

3 la-bx],
c + d(] # t) s

G(x,t) from

U(x) = % [a cos/ix - ;% sin/ix] ,
(5.42)
V(t) = ¢ cosv/a(l - t) + ﬁ} sinva(l - t) ,
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and the Fredholm determinant is
(5.43) 5(A) = + [(ad - be)cos?X - (ac/T + S)sin/i] .

The eigenvalues of G(x,t) may thus be found by solving the simple
transcendental equation

tan/A _ ad - bc

(5.44) e~
for SEEPIERRE and the results substituted into (5.42) to obtain the

corresponding eigenfunctions. To simplify these expressions, one may
introduce the angles

-1 b

(5.45) ¢ = ¢(2) = tan T o I 8(r) = tan'] Eéz .

which gives

i
U(x) % al + 9; cos(Ax + ¢) ,
(5.46)» >
vit) = e + L sinl/A0 - t) + 0]
A L ]

and

2 2y¢.2 2
(5.47) a(x) = % WV/(a AL l{c At cos(Vi + ¢ +0) .
Thus,

A
(ad
HA
>
A
pu—
-

cos(vat + ¢)sin[/A(1 - x) + ¢ 0
7xcosiéx +¢+0) ’

cos(/ax + ¢)sin[/A() - t) + Ql _
Jacos(vVr + ¢ + 0) Ssxstcl,

(5.48) r(x,t;)) =

provided, of course, that a()) # 0.

From (5.47), the eigenvalues Apsdps... of (; must satisfy

(5.49) A+ aa) + () = (2" - ne1.2,...

o e A RO
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or

(ad - be)VA '
- =1 n_{2n -} -
(5.50) A, + cot Tac bd = T, TR T SRR

which is equivalent to (5.44).

The method given above extends readily to two-point boundary value
problems of arbitrary order. In general, the Volterra kernel K(x,t) is
obtained by integrating (5.1) as an initial value problem with zero

initial conditions; for example, for

(5.51) LIy(x)] = -y"V(x) ,

one obtains

e 3 t)3

(5.52) K(x,t) = R Desraxs) .

A
nA

The functions u](x)....,un(x) and v](t)....,vn(t) which give the
Green's function G(x,t) as a finite rank modification of K(x,t) are
then found by solving for the initial conditions, in terms of integral
transforms of h(x) to satisfy the given boundary conditions, it being
assumed that the resulting system of equations has a unique solution. Of
course, only selfadjoint boundary value problems give rise to symmetric
Green's functions. In the next section, nonsymmetric separable kernels
will be discussed.

For nonlinear boundary value problems,
(5.53) h(x) = f(x,y(x)) ,

the use of the Green's function G(x,t) leads to a Hammerstein integral

equation

1
(5.54) y(x) - £ G(x,t)f(t,y(t))dt = 0 .

T R P




If G(x,t) 1is of the form (4.1), then (5.54) is equivalent to the non-
linear system
f/ y(x) - fx K(x,t)f(t,y(t))dt = au(x) ,
(5.55) :
a = (f)l v(t)f(t,y(t))dt .
The first equation of (5.55) is a nonlinear Volterra integral equation.
If this can be solved for
(5.56) y(x) = y(x3a) ,
then substitution into the second equation gives the single nonlinear
scalar equation
1
(5.57) a = é v(t)f(t,y(t;a))dt = ¢(a)
for «. In general, this procedure for solution cannct be carried out
explicitly, as in the linear case, so various approximation methods,
usually based on iteration, have been studied for this problem. In
particular, it may happen that o = y'(0), 1in which case iterative
determination of o and hence y(x) is sometimes referred to as a
"shooting" method [10]. If G(x,t) 1is of the form (4.30), then a similar
construction leads to a single nonlinear Volterra integral equation for

y(x) = y(X;a],...,un) and the nonlinear scalar system
1
(5-58) Qi = é vi(t)f(t,y(t;u],.-o,un))dt’ 1 by ],z,...,n .

for A rlipse e slp. Further discussion of nonlinear boundary value problems

is outside the scope of this paper.
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6. The nonsymmetric case. In certain problems, one may have to deal

with separable kernels which are not symmetric, such as finite linear
combinations of kernels of the form r(x)G(x,t)w(t), where G(x,t)
is a symmetric simple separable kernel (5.1). As a prototype of separable

kernels in the general case, consider the simple kernel

u(t)vix), Gzstsnz ¥V,
(6.1) G(x,t) =

p(x)q(t), 3 TS A B
subject to the condition
(6.2) u(x)v(x) = p(x)q(x), Dzxs1,

which insures that the traces of G(x,t) and its associated kernels

are uniquely defined. Formulas will now be developed for the Fredholm
determinant A()) and the resolvent kernel T(x,t;2) of the simple
separable kernel (6.1). The general separable kernel, which is a finite
linear combination of kernels of the form (6.1), can then be handled by
the technique given in §4, or the method to be discussed in §7.

Writing the Fredholm integral equation (4.2) as the system

f' y(x) - 2 Ix K(x,t)y(t)dt = f(x) + rcp(x) ,
(6.3) i\ ° :
g = é q(t)y(t)dt ,
where
(6.4) K(x,t) = u(t)v(x) - p(x)q(t) ,
one obtains as before
(6.5) a(x) =1 - élq(x)P(x)dx =1 -2 él Q(t)p(t)dt ,

with the functions P(x), Q(t) given by

e b vk
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X
p(x) + » [ R(x,t;x)p(t)dt ,
0

P(x)

(6.6) :
q(t) + » [ q(x)R(x,t3r)dx ,
t

"

Q(t)

in terms of the Volterra resolvent kernel R(x,t;x) of K(x,t). If

a(r) # 0, then equation (4.2) has the unique solution

X
(6.7)  y(x) = f(x) + 2 [ R(x,t;)f(t)dt + Z%U 1Pt F(t)dt
0 0
from which it follows that the Fredholm resolvent kernel of the kernel (6.1) is

P(x t

R(x,t3)) + 5 Tk

0

A

t 14

nAa
b3
nA

(6.8) r{x,t3x) =

o
WA
b3
A
(g
nA
-—

Alternatively, one may write

1
y(x) + 2 [ K(x,t)y(t)dt = f(x) + adv(x) ,
X

(6.9) :

d = é u(t)y(t)dt .

This leads to the expressions

1 ]
(6.10) a(r) =1 - A £ u(x)V(x)dx = 1 - é u(t)v(t)dt

for the Fredholm determinant of G(x,t) in terms of the functions

1
V(x) = v(x) - 1 [ R(x,t;a)v(t)dt ,
X

(6.11) q
U(t) = u(t) - » [ u(x)R(x,t;1)dx ,
0

:
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and, if a(x) # 0, to the unique solution

(6.12)

1

]
(x) = f(x) = & [ R(x,t;2)f(t)dt + — V(x)U(t)F(t)dt
y(x X { X e é X

of (4.2). Thus,

(6.13)

(=)
uA

U(t)Vv(x :
ALS . t;x‘:lv
r(x,tsx) =

l:R(x,t;A) + QLE%%§§1 ? Bed ek ad ,

ua

provided that the Fredholm determinant does not vanish. In (6.11)-(6.13),

use is

made of the extension of the function R(x,t;») defined by (2.2)

to the triangle 0 < x ¢t < 1.

(6.14)

Comparison of (6.13) and (6.8) yields

a(M)R(x,t32) = U(t)V(x) - P(x)Q(t), Bsats,

and finally,

(6.15)

u(t)V(x

Alh s Oét;X;],
r(x,t;r) =

P(x)Q(t

Al ) ozx;t;]

Theorem 6.1. If A(X) # 0, then the simple separable kernel (6.15)

is the Fredholm resolvent kernel of the simple separable kernel (6.1).

(6.16)

where

(6.17)

1f (") = 0, then it follows from (6.14) that

v V0 = PR (L)
U(t) = u(tn’), Q) = qeen’)
Vix) = v, PR(x) = P(xin ")

are obtained from (6.6) and (6.11) with » = x*. It follows from (6.16)

that V*(x) and P*(x) are linearly dependent, and either may be taken

S
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as a right eigenfunction of G(x,t) corresponding to the eigenvalue
*; similarly, U*(t) and Q*(t) are proportional and furnish a correspond-
ing left eigenfunction of the kernel (6.1).
0f course, the functions U(t), V(x), P(x), Q(t) may be found
by solving the appropriate Volterra integral equations if it is desired

to avoid the explicit computation of R(x,t;x).

A D A S e = e



7. An alternative computational method. Suppose that G(x,t) is a

Fredholm or Volterra kernel with known resolvent kernel T1(x,t;»), and

it is desired to construct the resolvent kernel rn(x,t;x) of the modified
kernel

.
(7.1) G (x,t) = G(x,t) + jél uj(x)vj(t) ’

In the special case that G(x,t) = K(x,t) 1is a Volterra kernel, one form
of the solution of this problem is given by (4.44), which requires the
inversion of an n x n matrix. It is also possible to obtain the resolvent
kernel by a step-by-step process similar to an elimination method for

matrix inversion. First of all, consider the rank one modification

£7.2) G](x,t) = G(x,t) + u](x)v](t) .

By applying the method of 54 (solving equation (4.2) with the kernel (7.2)),
one obtains
1 1
(7.3) A](A) =1-2] v](x)U](x)dx & W ) V‘(t)u](t)dt
0 0

for the Fredholm determinant of G](x,t), where

L}

1
U](x) u](x) + [ r(x.t;x)u](t)dt X
(7.4) ¢

1
Vo(t) = vilx) + 2 [ vy(x)r(x,tsa)dx .
0

‘Theorem 7.1. If A](A) # 0, then the resolvent kernel r](x.t;x)

of the rank one modification G](x,t) of Gixst) s

U](x)V](t)
(7.5) T‘](XJH) . I‘(X,t;)\) + —T](T)'__— )
-37-
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which is a rank one modification of the resolvent kernel ['(x,t;3).

This result has been exploited a number of times previously: see,
for example, (4.15), (4.16), (4.21), (4.22), (5.36), (6.8), and (6.13).
It is analogous to the Sherman-Morrison-Woodbury formula for finite

matrices [9, pp. 123-124]. Now, instead of (7.1), one may consider the

sequence of kernels

"

Gylxst) = G(x,t)

(7.6)
G (xst) = G _1(x,t) + u (x)v, (t),  k=1,2,....n,

each of which is a rank one modification of the previous kernel. Taking

(7.7) Tolxst32) = r(x,t52) ,

one may construct the corresponding sequence of resolvent kernels

Uk(x)Vk(t)

(7.8) Mbatin) = 1 L 0atid) + TR koo 1.2,
where
1
U (x) = u (x) + 2 é Mo (atin)y, (thdt
(7.9)
1
Vi (t) = v, (t) + é v (0T, e tin)dx
and
1 1
(7.10) 8(2) =1 -1 [ V(U (x)dx = 1 - % [V, (thu (t)dt ,
0 0

and obtain rn(x,tgx). provided, of course, that

(7.11) Ak(k) $0, K* 1,2,...40 .
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8. Numerical implications. For a Fredholm integral equation with a

separable kernel G(x,t), it has been shown that methods appropriate to
Volterra integral equations can be used to obtain the Fredholm determinant,
resolvent kernel, and eigenfunctions of G(x,t). As better estimates are
available for convergence of the resulting expansions than in the general
Fredholm case, effective analytic or approximate computations can be carried
out. Although explicit formulas can be obtained only for very simple
problems, it may be that the Volterra kernel K(x,t) is a polynomial or
other simple function of x and t, in which case a computer can be
programmed to find the coefficients in the expansion (2.2) of the resolvent
kernel K(x,t;x) to obtain any desired degree of accuracy. Eigenvalues

of G(x,t) can also be obtained by computing zeros of the entire function
a(x). This is a more difficult problem, but can once again be done with
any desired accuracy.

If the analytic or semi-analytic approach appears fruitless or
uneconomical, then strictly numerical methods based on numerical integration
may be used. For the Volterra integral equations considered, these lead
to Tower triangular systems of equations which can be solved quickly
and accurately, even if large [14,15]. As numerical integration is usually
much more accurate than numerical differentiation, this technique offers
an alternative to finite-difference methods for two-point boundary value

problems for ordinary differential operators.
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